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Reaction Time Correlations during Eye–Hand Coordination:
Behavior and Modeling
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During coordinated eye– hand movements, saccade reaction times (SRTs) and reach reaction times (RRTs) are correlated in humans and
monkeys. Reaction times (RTs) measure the degree of movement preparation and can correlate with movement speed and accuracy.
However, RTs can also reflect effector nonspecific influences, such as motivation and arousal. We use a combination of behavioral
psychophysics and computational modeling to identify plausible mechanisms for correlations in SRTs and RRTs. To disambiguate
nonspecific mechanisms from mechanisms specific to movement coordination, we introduce a dual-task paradigm in which a reach and
a saccade are cued with a stimulus onset asynchrony (SOA). We then develop several variants of integrate-to-threshold models of RT,
which postulate that responses are initiated when the neural activity encoding effector-specific movement preparation reaches a thresh-
old. The integrator models formalize hypotheses about RT correlations and make predictions for how each RT should vary with SOA. To
test these hypotheses, we trained three monkeys to perform the eye– hand SOA task and analyzed their SRTs and RRTs. In all three
subjects, RT correlations decreased with increasing SOA duration. Additionally, mean SRT decreased with decreasing SOA, revealing
facilitation of saccades with simultaneous reaches, as predicted by the model. These results are not consistent with the predictions of the
models with common modulation or common input but are compatible with the predictions of a model with mutual excitation between
two effector-specific integrators. We propose that RT correlations are not simply attributable to motivation and arousal and are a
signature of coordination.

Introduction
Coordinating eye and arm movements is central to our natural
behavior. Eye– hand coordination depends on a combination of
retinal and extra-retinal signals necessary for accurate movement
(Crawford et al., 2004). Saccade reaction times (SRTs) and reach
reaction times (RRTs) are highly variable and are correlated from
trial to trial with a variable degree of correlation (Herman and
Maulucci, 1981; Lünenburger et al., 2000; Boucher et al., 2007b)
(for an example, see Fig. 1A). Because saccade durations are ste-
reotyped (Bahill et al., 1975), one possible advantage of correlated
reaction times (RTs) is to allow the eye to acquire a target at a
consistent time with respect to the arm movement. This temporal
consistency could enhance the performance of visual processes
guiding manual accuracy (Neggers and Bekkering, 2002). There-
fore, RT correlations may constitute a signature of coordinated
eye and arm movements.

RT correlations, however, are not necessarily a measure of
behavioral coordination. They occur in behavioral paradigms
such as dual-task paradigms designed to tax cognitive processing
and perceptual paradigms with time-consuming sensory pro-
cessing (Pashler, 1994; Tombu and Jolicoeur, 2002). RT correla-
tions may also result from global changes in responsiveness
caused by changes in arousal or motivation (Boucher et al.,
2007b). Global changes modulate motor preparation and could
lead to RT covariations independently of sensorimotor coordi-
nation. Correlations could also be attributable to bottlenecks in
processing if longer processing of the first process delays the sec-
ond process (Pashler, 1984; Navon and Miller, 2002).

Dual-task paradigms can be applied to looking and reaching
to test the link between RT correlations and coordination. We
can cue movements to be made together and coordinated or to be
made separately at different, unpredictable times by introducing
a random delay, or stimulus onset asynchrony (SOA), between
the cue onsets. Varying the SOA will manipulate coordination
and test the relationship between RT correlations and sensorimo-
tor coordination.

Computational models allow us to explicitly distinguish be-
tween different hypotheses for the possible mechanism underly-
ing RT correlations. Many modeling approaches of RTs are based
on the integrator paradigm, in which information is accumulated
until a behavioral response is initiated (Laming, 1968; Luce,
1986). The diffusion model, a type of stochastic integrator model
in which activity grows continuously in time (Ratcliff, 1978), can
account for the chronometry of RT tasks with single (Smith,
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1995) and simultaneous cues (Diederich, 1995), and in two-
choice RT tasks (Usher and McClelland, 2001; Eckhoff et al.,
2008). The model is also consistent with the neuronal activity
during detection (Hanes and Schall, 1996), perceptual discrimi-
nation (Roitman and Shadlen, 2002; Gold and Shadlen, 2007),
and other sensorimotor tasks (Cisek, 2007) and can be imple-
mented in biophysically plausible network models (Wong and
Wang, 2006), whose properties can be related to diffusion model
parameters (Roxin and Ledberg, 2008).

Here, we combine computational models with behavioral ex-
periments. We extend the diffusion model to dual-task para-
digms using two interacting nonlinear leaky integrators that
encode the preparation of saccades and reaches. Model predic-
tions are tested against behavioral data from three monkeys per-
forming an SOA task that involves looking and reaching.

Materials and Methods
Training and surgical procedures
Monkeys made visually guided saccades and reaches for juice rewards.
Reaches were made to a touch-sensitive screen (ELO Touch Systems)
mounted in front of either a liquid crystal display or a custom light-
emitting diode (LED) board on which targets were presented. Eye posi-
tion was monitored with an optical video eye tracker (ISCAN). Behavior
was controlled using custom Labview (National Instruments) code run-
ning on a real-time PXI platform. After several weeks of training, a head-
restraint prosthesis was implanted to maintain stable head position
during recordings. All procedures were done under isoflurane anesthesia
and sterile conditions. At least 3 weeks after surgery, the monkeys began
training in eye movement and reaching tasks. All surgical and animal care
procedures were done in accordance with the National Institute of
Health guidelines and were approved by the New York University Ani-
mal Care and Use Committee.

Behavioral tasks
Behavioral data were collected from three adult male rhesus macaques
(monkey H, monkey J, and monkey S). In the SOA task, each trial started
with the illumination of a red and green central target (Fig. 1 B). Monkeys
were required to fixate and touch the screen within 4° of the stimulus,
after which a yellow peripheral location cue appeared 20° to the left or
right of center. When the location cue appeared, the red center fixation
point was simultaneously extinguished, cuing a saccade to the peripheral
cue. At a randomized interval after the saccade go cue, the monkey re-
ceived an auditory cue to make a reach to the same peripheral target. The
speaker for the auditory cue was located behind the touch screen and in
the same location for all trials and thus did not contain information
about the target location on each trial. Each trial was initiated when a
monkey touched a pair of proximity sensors placed near the body with
his hands. The non-reaching hand was required to maintain touch on a
proximity sensor throughout the trial. A brief auditory tone preceding
reward delivery served as a secondary reinforcer on all correct trials.

The SOA task requires animals to dissociate the timing of the saccade
from the reach. However, when each monkey was initially presented with
the saccade and then reach cues, they tended to perform a reach and
saccade together and did not dissociate the movements from each other.
In pilot experiments, we determined that we could train the monkeys to
follow the cues more accurately by using an uneven distribution of the
duration of the interval between go cues, SOAs, and by interleaving dif-
ferent task conditions. We obtained the best results when SOA was 0 in
70 –90% of the trials each day; in the remaining 10 –30% of trials, the
SOA was a random number drawn from a uniform distribution with
range 0 – 620 ms (Fig. 1C). To discourage monkeys from always prepar-
ing reaches as soon as a location cue appeared, we interleaved SOA task
trials with delayed saccade and touch task trials in which the location cue
was red and signaled a saccade alone. In those trials, subjects were re-
warded after a saccade to the target while continuing to touch the center
green stimulus. Delayed saccade and touch trials constituted 10 –20% of
total trials each day and accounted for 11% of successful trials for mon-

key H, 19% of successful trials for monkey J, and 18% of successful trials
for monkey S.

The full set of trials, therefore, included a set of trials in which the reach
was made quickly together with the saccade (SOA of 0 ms), a set of trials
in which the reach was never made (delayed saccade and touch), and a set
of trials in which the reach movement was made at varying delays with
respect to the saccade (SOA between 0 and 620 ms).

To further discourage early or late movements, each monkey was
trained to wait until the go signal for each movement before promptly
making that movement. To discourage late movements, monkeys had to
respond to the appropriate go signal with a saccade within 350 ms and a
reach within 600 ms (700 ms for monkey S). To keep animals from trying
to predict the go signal and moving early, a trial was aborted if the SRT
was shorter than 120 ms or if the RRT was shorter than 150 ms. These
constraints on maximum and minimum RT encouraged monkeys to
prepare each movement immediately after the relevant cue.

To control for the influence of an auditory go cue for the reach com-
pared with a visual go cue for the reach, we also ran a separate set of trials
with a modified SOA task in one animal (monkey H). In the modified,
visual–visual SOA task, we delivered a visual go cue for the saccade and a

Figure 1. Correlations in RT and SOA task. A, Scatter plot of RRT against SRT for a simple
look–reach task. Each dot shows the RTs for one trial. B, Each trial starts with the subject fixating
and touching a central target. The appearance of the peripheral target (yellow) and simultane-
ous disappearance of the central fixation target (red) cues the subject to make a saccade to the
peripheral stimulus. After a random interval, an auditory cue instructs the subject to make a
reach movement to the peripheral target. C, Distribution of SOA durations. In 70% of reach-and-
saccade trials, the SOA was 0, whereas in the remaining 30% of reach-and-saccade trials, SOA
was a random duration drawn from a uniform distribution between 0 and 620 ms. To prevent
the subject from anticipating reaches, in 20% of the total number of trials, subjects had to
respond to the saccade cue only and keep touching the central target (delayed saccade and
touch trials).
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visual go cue for the reach. All other details of the visual–visual SOA task
matched the SOA task described above.

Data collection and basic analysis
Eye position and touch position on the screen were sampled at 1 kHz.
Each signal was time stamped and streamed to disk along with data about
each trial from the Labview behavioral control program. The time of the
visual cue presentation was recorded as the time at which a photosensor
detected a simultaneous stimulus change on the monitor or LED board.
Reach start was recorded as the time at which the touch was no longer
detected within a 4° window around the central touch point. Eye position
was filtered and instantaneous velocity calculated. Saccade start was de-
fined as the time at which velocity first exceeded 50°/s at the beginning of
the movement after the saccade go cue that resulted in peak velocity
�200°/s.

Behavioral analysis
Reach and saccade RTs were binned according to the SOA using 13 bins
of 50 ms from 0 to 650 ms. The trial counts per bin were 19,567, 268, 899,
754, 940, 770, 577, 542, 954, 1158, 941, 720, and 478 for monkey H, 1155,
406, 298, 262, 307, 274, 301, 283, 330, 396, 352, 236, and 81 for monkey
J, and 16,242, 333, 312, 355, 335, 354, 362, 372, 274, 310, 317, 261, and 98)
for monkey S.

Overlap in movement preparation for each trial was computed as the
elapsed time between the reach go cue and the saccade start (Fig. 1C).
Thus, overlap depends on both the SOA and the monkey’s SRT on that
trial. If the reach go and saccade go cue are given simultaneously in a trial,
the overlap is the SRT. Because the reach go cue always occurred with or
after the saccade go cue, the largest overlap value is the longest SRT when
SOA was zero. The overlap is negative when the reach go is given after the
saccade begins. Because SRT varies from trial to trial, a given SOA dura-
tion is associated with a distribution of overlap durations. We tested SOA
intervals uniformly distributed over more than two times the range of
SRT so that, when we grouped trials by overlap, the distribution of SRTs
for a given overlap condition was not distorted.

To graph the effect of overlap duration on the RT correlation, trials
were binned by overlap time using 9 bins of 50 ms from �250 to 200 ms.
The resulting trial counts per bin were 931, 679, 558, 542, 1401, 567, 691,
1561, and 7691 for monkey H, 397, 343, 259, 395, 211, 285, 289, 546, and
3104 for monkey J, and 298, 317, 336, 494, 242, 291, 405, 1064, and 9374
for monkey S. Bins with �10 trials of data were not subject to additional
analysis.

The correlation between SRT and RRT for each group of trials was
computed using Pearson’s correlation coefficient. The 95% confidence
intervals were computed as tanh(arctanh( R) � 1.96 � SE), where R is the
correlation coefficient, and SE � 1/�N � 3, with N being the number
of trials in the bin (Zar, 1996).

Computational models
Leaky nonlinear integrators for saccade and reaches
In the computational models, preparation and initiation for saccades and
reaches is encoded in the activity of two neuronal populations, s and r
(Fig. 2 A). A particular movement is initiated when the mean firing rate of
the corresponding population reaches a threshold (Fig. 2 B). The mean
firing rate of each population obeys a differential equation of the type

�
dri

dt
� �ri � ��Ii�, i � r, s, (1)

where � is the recruitment time constant of the neuronal population, of
the order of 100 ms, �(�) is an input– output transfer function, and Ii is
the net input received by the integrator, which consists of a sum of
external and recurrent inputs induced by the coupling within and be-
tween populations (Wilson and Cowan, 1972; Amit and Tsodyks, 1992;
Pinto et al., 1996). The first term on the right side of Equation 1 accounts
for the decay of network activity in the absence of inputs. The function
�( I) is the steady firing rate with which the population responds when
driven by a constant input I and is in general a nonlinear and monoton-

ically increasing function of the input. A parsimonious and mathemati-
cally convenient choice for �( I) is a threshold-linear function:

��I� � g�I � �	
 � �g�I � � � if I � �,
0 otherwise, (2)

where g � 0 is a gain modulation factor, and � is a threshold related to the
rheobase current of neurons. When inputs are below threshold, the
transfer function is 0 and the population activity ri(t) decays to zero with
time constant �. When they are above threshold, ri(t) grows at a rate
dictated by the magnitude of the input Ii, also with characteristic time
constant �. In its simplest form, the input received by each population is
a sum of recurrent inputs, proportional to the mean firing activity of the
population and population-specific external inputs:

Ii � �ri � Ei�t�, i � r, s, (3)

where � �0 is the strength of the recurrent coupling, and Ei(t) is the
movement-specific external input, which provides the available moment-
by-moment information relevant for initiation of movement i. This infor-
mation is brought about by bottom-up sensory signals as well as top-down
urgency signals and may vary over the course of the trial. We lump together
these two contributions and model the net external input as a single time-
dependent signal ei(t) perturbed by additive noise. The noise reflects instan-
taneous fluctuations in the form of neuronal and synaptic noise, both along
the sensory pathway as extrinsic from the incoming signal, as well as intrinsic
noise attributable to the spontaneous background activity from other brain
areas. The external input has therefore the form

Ei�t� � ei�t� � 	
i�t�, (4)

Figure 2. Dual integrator model. A, Diagram of the integrator model for a dual reaction time
task. Each filled circle corresponds to an integrator, each of which receives specific external input
Ei (i � s,r stands for saccades and reaches, respectively). Self-directed arrows represent the
recurrent inputs within a unit. B, Schematic of the integrate-to-threshold process for the initi-
ation of saccades and reaches. When the go cue signal for the saccade appears at time t � Tonset

s, the input to the saccade unit is switched on and the unit starts integrating the input. Similarly,
the reach unit starts integrating after the onset of the go cue signal for reaches, at time t �
T

onset r
� Tonset s 
 SOA. According to the model, the initiation of saccades and reaches is given

by the times of threshold crossing Tcross s and Tcross r, respectively. The bottom panel shows the
time course of the external inputs Es(t) and Er(t), which consist of a step current perturbed by
additive noise. Each current is switched off when the associated integrator variable hits
threshold.
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where 	 is the noise intensity, and 
i(t) is a source
of Gaussian noise with white spectrum, that is,
the values of the noise are uncorrelated at differ-
ent times. Except for the model with shared fluc-
tuations, described below, the noise sources 
s(t)
and 
r(t) are uncorrelated with one another.
We choose a very simple form for the time-
dependent movement-specific signal ei(t), which
switches from 0 to 1 at the time onset of the go cue
for movement i. This sudden increase in the in-
put at the go cue is sufficient to drive the unit
from the subthreshold regimen, Ii � �, where the
unit does not integrate inputs, to the suprath-
reshold regimen, Ii � �, where it does. The dy-
namical equation of the integrator is obtained by
plugging Equations 2–4 into the differential
Equation 1. In the suprathreshold regimen, the
resulting equation has the form

dri

dt
� �kri � e�i �t� � 	�
i�t�, (5)

with k � �1 � g��/�, e�i �t� � g([ei(t)��)/� � 0,
and 	� 
 g	. Equation 5 describes a stochastic
integration of the signal e�i �t� in which the rate of
accumulation depends linearly on the accu-
mulation variable [Ornstein-Uhlenbeck process
(Gardiner, 1985)]. The value of the coefficient k
reflects the net balance between the positive feed-
back generated by the gain and the recurrent ex-
citation on the one hand, and the negative
feedback attributable to the leakage on the other.
When k � 0, negative feedback dominates and
the activity of the accumulator grows until even-
tually approaching a steady state determined by
the signal strength e�i �t�. Conversely, when k � 0,
positive feedback is dominant and the firing ac-
tivity blows up exponentially unless some mech-
anism for threshold detection comes into play. In
either case, the characteristic time constant of the dynamics is 1/k. The particular
casek�0correspondstoaninfinitely longexponentialdecay(orgrowth)andso
to a lossless integration of the external input Ii � e�i �t� � 	�i 
i�t�. The inte-
grated variable ri(t) follows in such case a Brownian trajectory with a constant
drift toward the threshold that is proportional to the signal strength e�i�t�, like the
classic diffusion model.

The parameters are chosen so that the integrator remains silent in the
absence of stimulation, i.e., when es � er � 0. At the onset of the go cue
signal for movement i, at t � Tonset i, the deterministic component of the
input ei switches from 0 to 1, and, as a result, the activity of ith unit starts
increasing. This rise in activity persists until the activity of the unit
reaches a threshold value H at some time t � Tcross i. After movement
initiation, the sensory signal for a particular movement is switched off
when the corresponding unit has reached threshold (Fig. 2 B), that is,

ei�t� � �1 if Tonset i � t � Tcross i,
0 otherwise. (6)

The total RT is the sum of a constant residual time T0, which represents
the net effect of delays attributable to transduction and transmission of
signals, and the time of integration to threshold: RT � T0 
 Tcross i �
T

onset i
. The duration of the integration process, Tcross i � Tonset i, is a

random variable by virtue of the noise present in the sensory signal Ei(t).

Models of interaction between integrators
Gain modulation model. Effects of slow, trial-by-trial changes in excitability,
such as might occur as a result of arousal or motivation, were modeled with
a gain g that was randomly drawn on each trial from a normal distribution
with mean 1 and variance 	g

2 �� 1 (Fig. 3, left). The value of the gain was
identical in both integrators and was fixed throughout the trial. Note that

changes in gain are not independent from changes in other parameters be-
cause modifying the gain is equivalent to changing appropriately the self-
excitation �, the SD 	, and the threshold of the input–output function, �, as
can be seen in the definitions following Equation 5.

Common noise model. The condition that fluctuations in the inputs be
uncorrelated among units is relaxed in the common noise model (Fig. 3,
middle). In that model, the inputs received by the saccade and the reach units
at any given time have correlated variabilities of magnitude c	2, where c is
the correlation coefficient of the two inputs and satisfies 0 � c � 1. The
covariance matrix of the inputs is then nondiagonal and can be written as

cov�Ei�t�, Ej�t�� � ��Ei�t� � ei�t�	�Ej�t�� � ej�t��	� � 	2�ij
�t � t��,

(7)

where angle brackets denote average over trials, 
(t � t�) is the impulse
function, and �ij � 1 if i � j, whereas �ij � c if i � j. The impulse function
on the right side of this equation expresses the fact that fluctuations at
different times are uncorrelated. Fluctuations with this covariance ma-
trix are generated from a sum of a shared noise source,
c(t), and an
unit-specific noise source, �i(t), both with zero mean and unit variance:


i�t� � �c
c�t� � �1 � c �i�t�. (8)

The scaling in c of the coefficients ensures that the variance of the net
fluctuations remains 1 as we vary the correlation coefficient.

Shared signal model. Forward excitation is implemented by adding a
fraction f of the signal to the counterpart unit (Fig. 3, right). The net
signals received by both units are then

�Es�t�� � es�t� � f er�t�,
�Er�t�� � er�t� � f es�t�,

(9)

Figure 3. Predictions of models with effector nonspecific interactions. A, Schematics of the models. B, Mean RTs versus SOA, for
different values of the relevant parameters of each model (see Materials and Methods for interaction between integrators). For the
model with common gain modulation (left), each curve corresponds to different values of variance of the intertrial gain variance,
	g

2; for the common noise model (middle), curves correspond to different fractions c of shared fluctuations (Eq. 7), whereas for the
shared signal model (right), curves are parameterized by the fraction f of the external input that originates from the signal of the
counterparts (Eq. 8). In all these models, mean SRT and RRT are equal. C, RT correlation versus SOA. Color codes as in B. The
parameters of the integrator units are � � 100 ms, � � 1, c � 0, f � 0, and 	g � 0, unless stated otherwise in the subpanels.
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where ei(t), with i � r, s, is given by Equation 6 and 0 � f � 1.
Mutual excitation model. The integrators can be coupled by adding a

cross-term to the inputs:

Is � �rs � �rrr � Es�t�,
lr � �rr � �srs � Er�t�. (10)

The parameters �r and �s are positive, not necessarily equal, and repre-
sent the excitatory coupling strength between integrators. In the follow-
ing, we refer to the case in which �r and �s are equal as the symmetric
mutual excitation model, whereas we call the case in which �s � 0 the
asymmetric excitation model.

The models with gain modulation, common noise, shared signal, and
mutual excitation (symmetric and asymmetric) have the same number of
free parameters. Given that the complexity of the models is the same, we
used the goodness of fit of these different architectures to select the model
that accounts best for the data.

Simulations
The dynamical Equations 1 were integrated with a time step dt � 0.5 ms
using an extension of a Heun algorithm to include stochastic terms
(Honeycutt, 1992) and drawing pseudorandom numbers from a
Mersenne–Twister generator. First-passage times to threshold were esti-
mated with a first-order interpolation between time steps. RTs were
modeled as a sum of the first-passage time to threshold and a fixed
residual time T0, which was a free parameter of the model. Although we
are using eight different parameters in the single integrator model
[namely, �, �, g, �, H, 	, and T0, and the scale of input switch ei(t), Eq. 6],
the first-passage times of the integrator depend only on the combination
of parameters (Smith, 1995):

H � ke�i �t�

	�
�

H

g	
�

�1 � g���e�i �t� � ��

	�2 , (11)

which represents the distance between the effective drive and the thresh-
old scaled by the intensity of the fluctuations. Parameter values are there-
fore undetermined with respect to first-passage times and, consequently,
to RTs. We set H � 1, 	 � 0.1, � � 0.5, ei � {0,1} throughout and took the
remaining parameters as free. Also, the gain g was 1 except in the model
with gain modulation.

To estimate the mean and the Pearson’s correlation coefficient of the
simulated RTs for each particular parameter set, we ran a sample of
10,000 trials using different realizations of the noise. We used such high
number of simulated trials to guarantee a good estimate of the Pearson’s
correlation coefficient, with an SD smaller than 0.05. The confidence
intervals of the Pearson’s correlation coefficient were estimated from a
bootstrap of 1000 replicates.

Results
Saccade and reach RTs in a simple eye– hand coordinated
movement are correlated. Figure 1 A presents SRTs plotted
against RRTs during an example behavioral session when
monkey J was required to make both a saccade and a reach
from an initial central touch and fixation point to an eccentric
target. Each data point represents SRT and RRT for a single
trial. The RTs for these coordinated movements are variable
(SRT � 219 � 37 ms, RRT � 294 � 41 ms, mean � SD) and
correlated (R � 0.55, p � 0.05).

To understand the significance of RT correlations, we studied
a dual reaction time task in which subjects had to respond with a
saccade and a reach to their corresponding go cues. Our first aim
was to study how saccade and reach RTs are affected by the degree
of coordination between movements. A simple way to manipu-
late the degree of coordination is by cuing the two movements
with a temporal separation between cues, or SOA, that is varied
on a trial-by-trial basis (Fig. 1B) (see Materials and Methods).
The idea is that movements that are cued separately and unpre-
dictably in time will be less coordinated than those that are cued

simultaneously. We used the dependence of the statistical prop-
erties of RTs on SOA to constrain the set of possible mechanisms
underlying eye– hand coordination. We focused in particular on
the dependence of the means and correlations between saccades
and reach RTs. We first hypothesize about mechanisms that
could give rise to correlations in the RTs of saccades and reaches
and explore these mechanisms using a family of diffusion models
of RT. The basic assumption of these models is that RTs are
dependent on the time taken for an activity-dependent random
walk to reach some prescribed threshold. Although these models
are purely phenomenological, recent experimental work suggests
that such an accumulation process may be encoded in the activity
of neural populations in cortical areas (Hanes and Schall, 1996;
Shadlen and Newsome, 2001; Roitman and Shadlen, 2002). In-
spired by this link to the neurobiology, we explore several plau-
sible mechanisms that could give rise to correlated RTs in a dual
reaction time task. Using a framework of two integrate-to-
threshold units, we have studied how RTs are affected when si-
multaneous gain modulations, common noise, shared signal
inputs, and mutual coupling affect the integration process (see
below, Model predictions). Each model makes testable predic-
tions for how the mean RT of saccades and reaches and the cor-
relations between the two should vary as movements are
increasingly separated in time. We then analyze behavioral data
collected from three monkeys performing the SOA task and com-
pare the results with the predictions of the models (see below,
Behavioral results). The models with simultaneous modulation
and shared input fail to account for the behavioral data. Only the
model with mutually excitatory units captures the main trends in
mean RTs and correlations. Based on the behavioral results, we
then develop interacting integrate-to-threshold models and
compare the model predictions with behavior (see below, Inter-
acting accumulator models). Finally, we mathematically fit the
parameters of an interacting integrator model to the behavioral
data (see below, Model fits to behavioral data).

Model predictions
We studied models of two neural integrators that determine
the RT of saccades and reaches. Each neural integrator is as-
sociated with one particular movement and responds selec-
tively to the associated go cue signal by undergoing a
stochastic rise of activity (Fig. 2). The behavioral response is
assumed to initiate when the buildup of activity reaches a
threshold. Immediately after the integrator hits threshold, the
selective input responsible for the buildup is switched off, causing
the integrator to decay to zero. In this framework, there exist
several mechanisms that may potentially give rise to correlations
between saccade and reach RTs. We first examine the predictions
of each model for mean saccade and reach RT and their correla-
tions as SOA varies.

Independent integrators
If saccades and reaches are generated by two parallel sensorimo-
tor pathways and two independent neuromodulation mecha-
nisms, an integrator model with two independent integrators
would describe their behavior (Fig. 2A). This hypothesis gives the
simplest dual-integrator model. The lack of interaction between
integrators results in SRTs and RRTs that are uncorrelated and do
not depend on SOA (results not shown). The presence of RT
correlations when movements are instructed together rules out
this possibility.
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Gain modulation
The neuronal populations involved in the preparation of sac-
cades and reaches may experience a common neuromodulatory
signal that affects their sensitivity to inputs (McCormick, 1989),
akin to the effect of motivation or arousal. It has been shown that
arousal effects are mediated by monoaminergic and cholinergic
ascending pathways from the brainstem and the basal forebrain
(Sarter et al., 2005; Herrero et al., 2008), which generally change
over hundreds of milliseconds. Given these relatively long dura-
tions, neuromodulation is likely to alter response times on a trial-
by-trial basis, but it is probably too slow to induce appreciable
changes within the course of a single trial. Despite their relative
slowness, these simultaneous and global changes in the circuitry
encoding movement preparation could result in correlations be-
tween RTs.

A simple model of common neuromodulation can be imple-
mented with two integrators whose sensitivity to inputs is varied
identically in every trial (Fig. 3A, left). Sensitivity to inputs is
controlled by the gain of the integrator, which ultimately reflects
the excitability of the neural population encoding movement
preparation. The gain, although variable from trial to trial, is
identical for both integrators and constant throughout a trial to
account for the global and slow character of neuromodulatory
signals. With such a model, neither mean RTs nor correlations
will depend on SOA (Fig. 3B,C, left) because there is no interac-
tion between integrators and no temporal dependence of the pas-
sive parameters. Common neuromodulation can, however, give
rise to RT correlations. These arise because both responses will be
fast when the integrator gains are high and slow when gains are
low. Consistent with this intuition, the magnitude of RT correla-
tions depends on the variance of intertrial gain modulations (Fig.
3C, left).

If we relax the assumption of static gains by letting the gain
change with some characteristic time constant throughout the
trial, the RT properties depend only on SOA at the time constant
of the gain changes (data not shown). This result reinforces the
intuition that models with arousal-like gain modulation predict
that changes in RT correlations do not occur quickly (i.e., within
a reaction time).

The gain modulation model shows that effector-specific
mechanisms of coordination are not necessary to generate RT
correlations. Nonspecific arousal-like mechanisms can generate
RT correlations, but the correlations do not depend on SOA.

Fast interactions. RT correlations may arise from common
inputs driving the areas preparing and initiating reaches and sac-
cades. We will distinguish between common inputs in the form of
shared signals and of common noise (Gawne and Richmond,
1993; Averbeck et al., 2006). By signal, we mean the component
of the input that encodes information specific to the preparation
of movements. In the model, the signal is the deterministic com-
ponent of the input, which drives the unit to threshold. Noise is
lumped as the stochastic component of the input. Although one
might expect correlated inputs to be a mixture of shared signals
and common noise, we consider each factor separately to isolate
their role in the dependence of RT correlations on SOA.

Common noise model
The areas responsible for the initiation of saccades and reaches may
have shared fluctuating inputs. This common noise can arise from
the activity of brain regions that innervate the areas guiding both
movements but do not carry information about the signals specific
for the task, such as sensory information about the go cues. This

form of nonspecific activity can be modeled as correlated noise in the
inputs to both integrators generating the movements.

To examine the effect of common noise fluctuations in isola-
tion from signal changes, we varied the correlation coefficient, c,
between the external input driving both units (Fig. 3A, middle)
(see Materials and Methods). The coefficient c can be interpreted
as the fraction of fluctuating inputs that are shared among units
when the mean and the variance of the inputs are kept constant.
Because the deterministic component of the input is unaffected
by the amount of correlated noise, mean RTs are not modulated
by c (Fig. 3B, middle). In addition, mean RTs do not depend on
the SOA because the signals of both integrators are effectively
independent of one another. In other words, fluctuations in the
input to one unit do not convey any information about the signal
of the other unit.

Common noise introduces RT correlations (Fig. 3C, middle).
These correlations arise because both units are driven to thresh-
old by the same fluctuations when they are activated close in time,
as occurs at short SOA. Also, the correlation coefficient between
SRTs and RRTs is larger when the incoming noise among units is
more correlated. Correlations in RT decay monotonically as SOA
increases and approach zero when SOA is longer than the mean
SRT. This trend results from the shortening of the time window
during which both units share the same fluctuating inputs.

The common noise model illustrates that effector-specific
mechanisms of coordination are not necessary to generate RT
correlations that decrease with SOA. Nonspecific mechanisms
can generate RT correlations that decay with SOA but do so in a
manner that influences mean SRTs and RRTs equally and inde-
pendently of SOA.

Shared signal model
The preparation stages of saccades and reaches may interact
through some type of feedforward excitatory shared signal. For
example, a common sensory stage in the processing pathway
would feed into areas responsible for preparing the saccade and
reach. This would influence subsequent RTs.

To model shared signals, we introduce a deterministic signal
received by a unit that includes not only the signal specific to it
but also some fraction of the signal driving the other unit (Fig. 3A,
right) (see Materials and Methods). Shared signal interaction
provides an implementation for the so-called “energy integra-
tion” models, according to which the “energy” of different sen-
sory modalities is assumed to sum somewhere in the nervous
system (Todd, 1912; Hershenson, 1962; Diederich, 1995).

In the shared signal model, mean RTs for reaches and saccades
are the same, as in the common noise model. Forward excitation
speeds up the integration to threshold if there is some overlap in the
stimulation periods of both units, resulting in shorter RTs. There-
fore, mean RTs depend on SOA, unlike the common noise model.
RTs are on average faster, and therefore movements are facilitated, at
short SOAs when the overlap between saccade and reach prepara-
tion is longer (Fig. 3B, right). Facilitation disappears for SOA longer
than the mean RT of the independent integrator.

Interestingly, unlike the common noise model, shared signal
excitation gives rise to negative RT correlations when reach and
saccade preparation overlap in time (Fig. 3C, right). The values of
the RT correlations are relatively constant for short SOAs, unlike
RT correlations caused by common noise, which progressively
decay as SOA increases. The reason for anticorrelation between
the RTs is that faster saccadic responses lead to shorter overlaps
between preparation stages. This leads to shorter windows of

2404 • J. Neurosci., February 16, 2011 • 31(7):2399 –2412 Dean et al. • RT Correlations: Behavior and Modeling



facilitation that result in slower reach responses and hence anti-
correlated RTs.

Comparing model predictions across the three integrator
models demonstrates that each model makes specific predictions
about the mean RTs and the RT correlations and their depen-
dence on SOA. Next, we analyze behavioral RTs during an SOA
reach and saccade task and compare the results with the model
predictions.

Behavioral results
The SOA task aimed to manipulate coordination between the
saccade and reach by separating movements by a random time
interval, the SOA duration (Fig. 1). The reasoning behind the
SOA task is that saccade and reach movements made separately at
large, unpredictable SOA intervals should be less coordinated
than movements made together at short or zero SOA intervals.
Therefore, if RT correlations reflect coordination, they should, at
a minimum, fall as SOA increases. However, as the integrator
models above demonstrate, RT correlations could arise from
other mechanisms that we would not necessarily consider to be
specific to coordination, such as common gain modulation, com-
mon noise, or shared signals. We analyze RT correlations in the
behavior of three monkeys performing the SOA task to test the
predictions of each model and determine whether the pattern of
RT correlations with SOA and overlap reflect any of the potential
nonspecific mechanisms modeled above or if another mecha-
nism is necessary to explain the pattern of results.

SOA
Mean RTs for saccades and reaches vary with SOA (Fig. 4A,B).
We consider SRT first. For all monkeys, SRT is generally fastest
when SOA is short (Fig. 4A). Monkey H and monkey J show clear

evidence of facilitation at the shortest
SOA. They also show stable SRT for SOA
greater than the mean SRT. Monkey S
shows facilitation with a faster mean SRT
for SOAs shorter than 250 ms except for a
single interval at SOA � 75 ms. At longer
SOA, the mean SRT for all three monkeys
is generally constant. Faster SRT for
shorter SOA was not attributable to the
use of an auditory cue for the reach. SRTs
for a modified visual-visual SOA task (see
Materials and Methods) were the same as
SRTs in the main visual–auditory SOA
task (monkey H: visual–visual SRT � 195
ms; visual–auditory SRT � 194 ms; p �
0.53; rank sum test). The facilitation of
SRT at short SOA is consistent with the
shared signal model but not with either
the gain modulation or the common noise
models.

Next, we consider mean RRT. For all
three monkeys and all SOA intervals,
RRTs are longer than SRTs (rank sum test,
p �� 0.05). Mean RRTs also vary with
SOA significantly differently than do
mean SRTs. On average, saccades are sys-
tematically faster at short SOA. In con-
trast, RRT varies non-monotonically with
SOA: reaches are faster at SOA shorter
than 100 ms, slower at intermediate SOAs
between 125 and 225 ms, and faster again
at long SOA (Fig. 4B). In monkey H and

monkey J, there was an exception to this trend at SOA � 25 ms,
which elicited the slowest RRT. Here, the effect of overlap that we
expect to see on RRTs could be masked by other factors. RTs have
been shown to be faster when more time is given to prepare
before a go cue. Because the location of the target is given when
the saccade is cued, longer SOAs give the reach a longer prepara-
tion time. The short SOA leaves the monkey little additional time
to prepare, leading to longer RTs. Monkey S is then an anomaly,
but note that the mean RRT for monkey S is much longer. Mon-
key S may take longer to prepare to reach, making the short
preparation time much less important.

None of the nonspecific/input models predict the pattern of
RT variations with SOA that we observe.

Next, we consider RT correlations. RT correlations are signif-
icantly greater than zero at some short SOA (�100 ms) in all
three monkeys (Fig. 4C). Importantly, RT correlations decrease
with increasing SOA, becoming statistically insignificant after
several hundred milliseconds.

Precisely how RT correlations vary with SOA differs between
monkeys. For monkey H, correlations start high (R � 0.40, p ��
0.001), drop with SOA, and stay significantly positive for SOA
shorter than 350 ms (Fig. 4C, left). Correlations start high (R �
0.49, p �� 0.001) for monkey J, fall with SOA, but become signif-
icantly negative (R � �0.13, p � 0.001) for SOA around 300 ms,
decaying to zero for longer SOA (Fig. 4C, middle). For monkey S,
RT correlations are highest when the SOA is shortest (R � 0.27,
p �� 0.001) but quickly drop to zero before staying slightly but
significantly positive for longer SOA durations around 300 ms
and returning to zero (Fig. 4C, right).

The variations in behavioral RT with SOA significantly differ
from the predictions of all three integrator models presented

Figure 4. Means and correlations of SRTs and RRTs as a function of SOA for the three subjects. A, Mean SRT versus SOA. B, Mean
RRT versus SOA. C, RT correlation versus SOA. Dashed line shows zero RT correlation. Error bars are 95% confidence intervals.

Dean et al. • RT Correlations: Behavior and Modeling J. Neurosci., February 16, 2011 • 31(7):2399 –2412 • 2405



above. The pattern of RT correlations is
not consistent with the gain modulation
model or shared signal model because RT
correlations vary with SOA and are posi-
tive at short SOA. The general decrease in
RT correlations with SOA is consistent
with the common noise model, but the
more complex dependence of RT correla-
tions with SOA, such as the negative RT
correlation around SOA � 300 ms seen in
monkey J, is at odds with the common
noise model. The variation of mean SRT
and RRT with SOA is also inconsistent
with the common noise model.

Because nonspecific/input mechanisms
do not predict the RTs observed in the SOA
task, effector-specific interactions between
the integrators may provide more accurate
models. To gain insight into appropriate
model architectures, we further examined
the behavioral data. We observed that the
time elapsed between the auditory reach cue
and the time of the saccade, or overlap, may
play an important role in understanding the
behavioral RTs. For example, the behavioral
data showed that the mean RRT increased at
intermediate SOAs when the auditory reach
cue was delivered around the time of the
saccade. In addition, the distribution of
SRTs for trials with overlap of 125 ms, when
the reach cue was delivered just before the
saccade was initiated, is bimodal (not shown
here). Hence, we examined SRT and RRT
and their correlations as a function of overlap. In the model, the
overlap corresponds to the period during which both integrators are
activated (Fig. 2B).

Overlap
SRT is bimodal for 125 ms overlap in all three monkeys. There-
fore, we divided trials into fast and slow subgroups by choosing a
cutoff SRT that was at the minimum between the two groups of
RTs. This cutoff was 180 ms for monkeys J and H and 190 ms for
monkey S. The fast SRTs represented 40% of trials for monkey J,
61% of trials for monkey H, and 68% of trials for monkey S.
Figure 5 presents the SRT, RRT, and their correlations as a func-
tion of overlap. For each measure, data for 125 ms overlap is
presented for the fast (solid) and slow (dashed) SRT groups. In all
three monkeys, SRT was stable for overlap durations shorter than
125 ms and was fastest for 175 ms overlap (Fig. 5A). A bimodal
distribution of SRTs is consistent with interference between the
reach cue and saccade initiation on a fraction of trials. Note that,
when we separate fast and slow SRTs for an overlap of 125 ms, all
three subjects are faster than average for the fast SRTs. For the
slower SRTs, monkeys H and J have mean SRTs that are no dif-
ferent than the mean SRTs for shorter overlaps. Monkey H, how-
ever, has a slower-than-average SRT. Adding the reach soon after
the saccade go is given may disrupt saccade planning in monkey
S, leading to the anomalous mean SRT at 75 ms. The faster SRTs
in all three monkeys may be attributable to an influence of the
reach go that speeds initiation of the saccade on some trials.

Consistent with the dependence of the mean RRT on SOA
(Fig. 4B), the mean RRT reaches a maximum around overlap 0
ms (Fig. 5B). That is, the RRT is on average slower when the reach

cue is delivered at the time of saccade initiation. A first plausible
explanation for this slowing is that there is bottleneck in the
processing of sensory information when the saccade is initiated.
The bottleneck would only affect the initiation of reaches, be-
cause we do not observe any consistent increase of mean SRT at
that time. The explanation is, however, incomplete because bot-
tleneck effects predict consistent increases in the mean RRT for
positive overlaps, not only for 0 overlaps, and cannot explain the
non-monotonic dependence of the mean RRT on SOA. An alter-
native explanation is that this non-monotonic dependence re-
sults from a combination of two independent factors: facilitation
at short SOAs (large, positive overlaps) and reduction of uncer-
tainty at long SOAs, which results from choosing a uniform dis-
tribution for SOA durations. We discuss these two effects in detail
in the next section.

The correlation of SRTs and RRTs varies with overlap consis-
tently across the three monkeys. RT correlations are different
from zero for positive overlaps and vanish for negative overlaps
(Fig. 5C). There are, however, some differences across subjects. In
monkey H and monkey S, RT correlations remain positive for all
positive overlap values, but in monkey J, correlations become
negative for overlaps shorter than 125 ms. The crossover of RT
correlations for positive overlaps is notable because it is not pre-
dicted by any of the models described above.

Interacting integrator models
Interactions between integrators associated with each movement
may be required to explain these behavioral results because the
overlap in time during which both integrators are active affects
RTs and their correlations. In particular, we find that RT corre-

Figure 5. Means and correlations of SRTs and RRTs as a function of overlap for the three subjects. A, Mean SRT versus overlap.
Data are separated at overlap � 125 ms for fast (solid line) and slow (dashed line) SRTs for all three panels (see Results). B, Mean
RRT versus overlap. C, RT correlation versus overlap. Thin dotted line shows zero RT correlation. Error bars are 95% confidence
intervals.
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lations are only significantly different from zero when overlap is
positive. We consider two models with direct coupling between
integrators (Fig. 6) (see Materials and Methods). A similar mech-
anism, based on inhibitory coupling and a stochastic race model,
has been proposed as a model for movement inhibition in a coun-

termanding task (Boucher et al., 2007a). In the symmetric mutual
excitation model, reach and saccade integrators directly excite
each other. In the asymmetric excitation model, the reach inte-
grator directly excites the saccade integrator but the saccade in-
tegrator has no influence on the reach integrator. In the
following, we examine the predictions of the interacting integra-
tor models for SRT, RRT, and their correlations.

Symmetric mutual excitation. The net input to each unit in-
cludes a positive coupling term proportional to the activity of the
partner unit. The coupling term induces excitatory interactions
between the units, leading to a positive feedback loop that causes
the activity to grow without bound unless there is saturation or a
threshold detection mechanism (for an example of the latter, see
Lo and Wang, 2006). In contrast to the common noise and shared
signal models, coupling induced by mutual excitation depends
on the instantaneous activity level of the units. This results in
more complex SOA dependencies (Fig. 6, left).

Mutual excitation increases the inputs to both integrators. The
input facilitates both saccades and reaches and shortens the mean
SRT and RRT (Fig. 6B,C, left). As in the shared signal model, the
degree of facilitation depends on how much overlap there is between
the stimulation periods of both units. Importantly, however, with
symmetric mutual excitation the mean RRT and SRT depend on
SOA differently. Mean SRTs decrease as SOA becomes shorter.
Thus, saccades, which are instructed first, occur faster when the
reach is activated soon after the saccade. In contrast, mean RRT does
not decrease monotonically with decreasing SOA. Instead, mean
RRT reaches its minimum value for SOA at around the mean SRT,
when the saccade unit reaches its peak of activity and drives the reach
unit most strongly. Mean RRT is therefore shortest when the SOA is
approximately equal to the mean SRT.

Symmetric mutual excitation leads to RT correlations that are
positive for short SOA, negative at intermediate SOA, and ap-
proach zero at long SOA (Fig. 6D, left). At short SOA, RT corre-
lation is positive and increases with coupling strength. RT
correlation is positive because the integrators associated with
each movement effectively share the same fluctuating inputs
through mutual excitation. The effect is similar to that seen in the
common noise model, although the nature of the fluctuations
differs between the two models. In the common noise model,
fluctuations shared with the other integrator enter simply as an
additive term. In the symmetric coupling model, shared fluctua-
tions are low-pass filtered and enter indirectly through the firing
activity of the partner unit. This difference explains why correla-
tions stay significantly different from zero for longer SOA periods
in the symmetric mutual excitation model compared with the
common noise and shared signal models, which both reflect cor-
related inputs. Another difference between the symmetric mu-
tual excitation model and both correlated input models shows up
at longer SOA. As SOA increases, RT correlations decrease and
eventually become negative for SOA longer than the mean SRT.
The reason for this change in sign is analogous to that given for
the shared signal model. Fluctuations leading to shorter-than-
average SRT lead to shorter-than-average windows of activity for
the saccade integrator and, consequently, to less facilitation for
the reach unit. Faster-than-average saccadic responses are there-
fore paired with slower-than-average reach responses, leading to
anticorrelated RTs. RT correlations vanish for sufficiently long
SOA because the reach and saccade units become effectively de-
coupled when they are activated far apart in time.

When plotted as a function overlap, RT correlations are zero
for negative overlap and show a negative-then-positive pattern
for positive overlap (Fig. 6E, left). Thus, mutual excitation criti-

Figure 6. Predictions of the model of two mutually coupled integrators with symmetric (left
column) and asymmetric (right column) coupling. A, Model schematic. Both integrators are
coupled by excitatory connections. The parameter � controls the strength of the influence of
the activity of the reach unit on the activity of the saccade unit. The strength of the connection
from the saccade to the reach unit is zero. Parameters �, 	, and � as in Figure 3. B, SRT as a
function of SOA duration for different levels of �. C, RRT as a function of SOA duration for
different levels of �. D, RT correlation as a function of SOA. E, RT correlation as a function of
overlap.
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cally depends on the relative timing be-
tween the reach cue and SRT. If the reach
cue is delivered after the saccade, there is
no correlation between the SRT and the
RRT.

Asymmetric excitation. To better under-
stand the role of mutual excitation in the
pattern of RT predictions, we examined an
asymmetric excitation model in which
reach activity affected saccade activity but
there was no reciprocal connection (Fig. 6A,
right). The parameter � is the coupling
strength from the integrator for reaches to
the integrator for saccades. Because the
reach unit projects to the saccade unit but
does not receive any connection from it, sac-
cade activity has no influence on reach activ-
ity. Therefore, only SRTs are shorter as a
result of simultaneous coactivation when
SOA is sufficiently short (Fig. 6B, right);
mean RRTs are not modulated by � or the
SOA (Fig. 6C, right). The same effect can be
restated in terms of the overlap. The effect of
facilitation is stronger with more overlap be-
tween preparatory stages (data not shown).
As in all other models, facilitation disap-
pears when the SOA is sufficiently long.
Moreover, RT correlations increase as SOA
gets shorter (Fig. 6D, right) and overlap in-
creases (Fig. 6E, right).

In summary, when the reach unit projects to the saccade unit
but does not receive any connection from it, only saccades will
benefit from the simultaneous coactivation occurring at short
onset asynchronies, and therefore only SRTs will show facilita-
tion. Analogously, saccade facilitation will be stronger when the
overlap in preparation is longer. Facilitation decreases monoton-
ically with the SOA and vanishes for SOA longer than the mean
SRT. When SOA is longer than the mean SRT, the extra input
provided by the reach unit comes too late to help the saccade unit
reach threshold earlier. Moreover, with asymmetric excitation
between units, correlations are positive at very short SOA, de-
crease monotonically as SOA get longer, and approach zero when
SOA is on the order of the mean SRT.

Model fits to behavioral data
Of all the models considered, only the model with asymmetric
mutual excitation captures the dependencies of the behavioral
measures on SOA and overlap. More specifically, it is the only
model predicting the facilitation of saccades at short SOA and the
decrease of positive RT correlations with SOA. Given that all the
models have the same number of parameters and hence similar
complexity, we favor the model with asymmetric mutual excita-
tion as the one best describing the data. We fit the empirical data
to the parameters of this model, considering a more general case
of the mutual excitation model in which the coupling strengths
between integrators take arbitrary values (Fig. 7). This allowed us
to study the continuum superset of models comprised between
the symmetric and the asymmetric excitation models. Note that,
in doing so, we are adding another parameter in the model and
we are therefore increasing its complexity. It is then legitimate to
ask whether other models of similar complexity could fit the data
equally well. A combination of the shared noise and the shared
signal models may also give rise to the observed dependences on

SOA with both facilitation at short SOAs and decrease of corre-
lations for increasing SOA. However, we have found that it is not
possible to have both facilitation and a monotonic decrease of RT
correlations with SOA in a model combining shared noise and
shared signal. Instead, we have seen that the model with mutual
excitation provides a better accounting for the data (data not
shown). A more quantitative comparison between models, based
on the calculation of the so-called Bayesian factors (the ratio of
the probabilities of the data given each model), lies beyond the
scope of this work.

The experimental data used for the fits comprised the data in
Figure 4, A and C, which characterize the dependence of mean
SRT and correlations on the SOA. We estimated model parame-
ters using an optimization algorithm that minimized the differ-
ence between the experimental data and the predictions from the
model, weighing each difference according to the precision of
each experimental data point (for details, see Materials and
Methods). The values of the best-fitting parameters are summa-
rized in Table 1.

Consistent with the predictions of the mutual excitation
models, the best fit coupling parameters between the integra-
tors are unequal. In all three monkeys, reach-to-saccade cou-
pling �r is at least three times as high as saccade-to-reach
coupling �s. The asymmetry in the coupling strengths ob-
tained from optimizing the data was expected given the lack of
significant negative correlations for SOA longer than the mean
SRT. Recall that, for models with symmetric coupling, corre-
lations are positive at short SOA and negative at longer SOA,
with comparable magnitudes.

In general, the mutual excitation model accounts for the facil-
itation of saccades observed at short SOA. According to the
model, mean SRT should start decreasing from its baseline value
as the SOA decreases below the mean SRT. This is because, on
average, the reach can speed up the accumulation process for the

Figure 7. Model fits to behavioral data. A, Dependence of RT correlations on SOA for behavioral and simulated data. B,
Dependence of mean SRT on SOA, for behavioral and simulated data. Black error bars indicate 95% confidence intervals of the
experimental estimates (as in Fig. 4 but using N �6 bins). Black curves, Model estimates, obtained from simulations, using best-fit
parameters (see Results for details and Table 1 for the parameter values); red shaded area, 95% confidence region of the model
estimates.
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saccade only when overlap is positive. The magnitude of the fa-
cilitation should be accentuated for shorter SOA (longer overlap)
for the same reason. These two predictions are consistent with the
observations for all three subjects, although there are some dif-
ferences in the magnitude of facilitation as well as in the SOA at
which facilitation becomes noticeable. For instance, the mean
SRT for monkey S does not show a clear monotonic dependence
on the SOA, in contrast to the other two monkeys. This explains
why the best-fit value for the recruitment time constant � of the
integrator is considerably shorter than for monkeys J and H and,
therefore, why the model predicts a mean SRT and an RT corre-
lation that shows no clear dependence on SOA except at very
short SOA (�150 ms).

Our modeling efforts have been focused on how well the mod-
els account for the dependence on SOA of the mean SRT and the
RT correlations. We have not considered the dependence of the
mean RRT on SOA because RRT are likely to be affected by ex-
pectancy effects, which are not accounted for by our simple mod-
els. In the dual RT task studied here, in which SOAs are random
and uniformly distributed, the saccade go signal provides infor-
mation about when the reach go signal is going to occur. This is
because the probability of appearance of the signal, given that it
has not yet occurred, increases as time progresses. Subjects are
therefore more certain about when the second signal is going to
appear as time elapses since the appearance of the first signal. It
has been reported that such increases in expectancy consistently
reduce RTs (Klemmer, 1957; Nickerson, 1965), and that, in gen-
eral, the mean RT is a monotonic decreasing function of the
conditional probability of appearance of the signal, or hazard
function (Stilitz, 1972). It is thus reasonable to expect that the
mean RRT at long SOAs is reduced with respect to the mean RRT
that would result in the absence of expectancy effects.

When combined with the predictions of our model, expec-
tancy effects can help explain the observed non-monotonic de-
pendence of RRT on SOA. According to our model, RRT are
mildly facilitated at short SOAs. Conversely, RRTs are shortened
at long SOA because of the increase of certainty brought about by
the passage of time. Combined together, these two factors leave a
window of SOA values within which reaches are not speeded up,
leading to a non-monotonic dependence of mean RRT on SOA.

The reduction of RRT induced by increases in expectancy
could be simply implemented in our model by an extra input to
the reach integrator. This input would be a monotonically in-
creasing function of the hazard function of the SOA, which for a
uniform distribution is approximately constant for short and
mid-range SOA and grows increasingly faster at long SOA, until it
blows up when the SOA reaches its upper value. Because the exact
dependence of the input on the hazard function is unknown,
introducing such input in the model would require adding more
free parameters to the description, which would increase the
complexity of the model.

Discussion
To better understand the mechanisms behind eye– hand coordi-
nation, we designed an SOA task in which reach and saccade go
cues were separated in time by a variable time interval. We then

studied RT correlations and mean RTs as SOA varied. RT corre-
lations were high when movements were cued at the same time.
When movements were separated by a few hundred milliseconds,
those correlations disappeared. SRTs were on average faster than
RRTs when reach and saccade go cues were simultaneous, sug-
gesting facilitation when saccades are made with a reach.

We compared the behavioral data with predictions from a
family of network models implementing integrate-to-threshold
dynamics. In all models, each movement RT is defined by the
time needed for neuronal activity to reach a prescribed level,
consistent with the finding that RTs are strongly correlated with
the firing activity of areas coding for motor planning and prepa-
ration (Riehle and Requin, 1993; Hanes and Schall, 1996; Roit-
man and Shadlen, 2002), as well as with the phenomenological
diffusion models of RT (Ratcliff, 1978). We have considered a
family of models with two neuronal populations that encode
saccade and reach preparation. The working hypothesis is that
facilitation and correlation of RTs reflects interaction between
neural populations involved in preparing movements. We have
considered several plausible mechanisms of interaction, includ-
ing common neuromodulation, shared inputs, and direct cou-
pling, and have proposed simplified models for each of them, to
disentangle the effect of each type of interaction on the depen-
dence of the statistics of RTs on the SOA.

Of all the models we analyzed, only the model with two mu-
tually coupled integrators can account for the behavioral data.
The model is sufficiently specific to capture the decrease of RT
correlations with SOA and the increase of mean SRT with SOA
but also sufficiently flexible to account for the differences across
subjects. The undershoot in correlations, which is observed in
monkey J for SOA longer than the mean SRT, provides an inter-
esting test of the model architecture. According to the integrator
model, the undershoot arises because, for SOAs slightly longer
than the mean SRT, saccades that are slower than average lead to
delayed peaks of saccade-related activity that speed up the reach.
As a result, SRTs and RRTs are anticorrelated. Importantly, this
analysis depends on trials for which SOA is greater than the mean
SRT across trials. When RT correlations are recalculated in terms
of overlap, defined as the time elapsed between the reach cue and
the saccadic response, RT correlations are negligible at negative
overlaps, i.e., when the reach cue is delivered after the SRT. RT
correlations vanish at negative overlaps because the time course
of activity of the reach unit, which ultimately determines RRT, is
independent of saccade activity that determined the SRT. Zero
RT correlations for negative overlaps are a strong prediction of
the integrator model. This prediction is borne out by the behav-
ioral data in all three monkeys.

The models proposed here are idealized descriptions of the
dynamics of neural populations and their potential interactions.
We chose a minimal description that incorporates the basic ele-
ments of neural processing without attempting to link model
parameters to the underlying neurophysiology. More biologically
realistic models, such as a network of spiking neurons with ex-
plicit synaptic and neuronal dynamics, will not necessarily
change the behavioral predictions if the main assumption, that
behavioral responses are triggered when neuronal population ac-
tivity reaches a threshold, remains the same. Predictions also rely
on neuronal activity smoothly decaying after reaching threshold.
Smooth decay is consistent with the observation that the neuro-
nal activity correlated with RTs decays gradually after reaching its
peak (Hanes and Schall, 1996) and is implemented in our model
by turning off the external inputs, which makes the after-
threshold activity decay. Although this particular choice shapes

Table 1. Best-fitting model parameters for all three subjects

Subject � T0 � �r �s

Monkey S 24.007 184.784 1.506 0.4108 0.0366
Monkey J 85.572 123.356 1.367 0.8197 0.0994
Monkey H 141.558 35.501 1.508 0.4799 0.2515
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the dependence of mean RRTs and RT correlations on SOA, we
do not expect these dependences to change dramatically with
other reset mechanisms.

Reaction times and eye– hand coordination
SRTs and RRTs are often correlated when the movements are
made together, although the degree and underlying cause of cor-
relations in various eye– hand tasks is unclear. Previous studies
have reported RT correlations ranging from very high (R � 0.8)
(Herman and Maulucci, 1981) to moderate (Prablanc et al.,
1979a; Gielen et al., 1984; Fischer and Rogal, 1986) to relatively
low (R � 0.5) values (Biguer et al., 1982). Bekkering et al. (1994)
found that eye movements were faster when made separately
from a hand movement to the same target, suggesting interfer-
ence instead of facilitation. However, the study used very large
stimuli to emphasize speed instead of accuracy and reported that,
unlike previous eye– hand movement studies (Prablanc et al.,
1979a,b; Herman and Maulucci, 1981; Gielen et al., 1984; Fischer
and Rogal, 1986; Abrams et al., 1990), the eye did not tend to
move before the hand and RT correlations were small. A saccade
and pointing study also found saccades slowed when combined
with pointing, although manual responses were faster when
made with saccades (Mather and Fisk, 1985). Hence, many fac-
tors can influence relative eye– hand RTs.

Correlations can also result from common sensory pro-
cessing. In a sensory, perceptual paradigm, if the sensory cues
used to initiate movement are difficult to detect or discrimi-
nate, variations in the duration of sensory processing will re-
sult in significant trial-to-trial variations in RT. When sensory
processing drives two movements, the trial-to-trial variations
in sensory processing will influence RT for each movement,
giving rise to stronger RT correlations. The shared signal
model we present might describe shared inputs attributable to
sensory processing.

Shared input signals may not only be important during sen-
sory, perceptual paradigms but may also describe subjects that
are uncertain about task contingencies, for example, during early
stages of behavioral training or exposure to a task. Task uncer-
tainty could lead to a processing stage common to both effectors
whose variability drives RT correlations. During initial training
for this task, we observed large RT correlations (R � 0.8) that may
be attributed to lack of practice. Once subjects became familiar
with the task, RTs became faster and RT correlations fell, stabi-
lizing at the values presented here (0.4 – 0.6).

Our results speak to the question of whether reaches are more
strongly influenced by coordinated saccades or vice versa, that is,
whether we look to where we reach or whether we reach to where
we look (Carey, 2000; Horstmann and Hoffmann, 2005). We
demonstrate the best fit when the reach-specific integrator drives
the saccade-specific integrator. Asymmetric coupling suggests
that eye movements can be tied to hand movements. Fisk and
Goodale (1985) studied RTs of eye and arm movements to visual
targets presented ipsilaterally or contralaterally to the starting
stimulus. Interestingly, SRTs were slower when made with a con-
tralateral reach, although there was no difference in RTs when
saccades were made without a reach.

Coordination is flexible, and eye– hand interactions may be
highly task specific. Here, the instruction to reach after the sac-
cade may have led to asymmetry in the underlying behavioral
mechanism. If so, instructing subjects to reach and then saccade
could yield the reverse pattern of results, effectively switching
SRT and RRT in the results above and implying asymmetric cou-
pling of the saccade to the reach. This would demonstrate dy-

namic functional coupling, but additional experiments are
needed to directly test this alternative.

Dual-task paradigms
Dual-task paradigms have a long history in the study of psycho-
logical processes (Pashler, 1998). Sometimes, these tasks interfere
with each other as a result of bottlenecks in sensorimotor pro-
cessing or central processing. According to the single-channel
hypothesis (Welford, 1952; Broadbent, 1958), there is a delay in
the processing of a second signal while the first signal is being
processed. The delay is taken to be a sign of limited capacity
central processing. Evidence for capacity limitations comes from
results that show the RT of the second of two closely spaced
signals is slower and inversely proportional to the time between
signals (Smith, 1967). Slowing of the second response is called the
psychological refractory period (Welford, 1952). The increased
RRT at short SOA that we observe shares similarities to the tra-
ditional psychological refractory period. Consequently, slowing
around the SRT could be attributable to bottleneck effects in a
channel that processes incoming sensory information. However,
unlike classic psychological refractory effects, the longest RRT
occurs around the saccade and is not inversely proportional to
the SOA.

Facilitation of the SRT for short SOA is a prominent effect in
our behavioral data. However, facilitation is not necessarily ex-
plained by a capacity limit. Dual-task paradigms also depend on
task difficulty, because concurrent performance of easy tasks is
speeded compared with individual performance, whereas con-
current difficult tasks are slowed (Keele, 1968). Coordinated eye–
hand movements comprise a relatively easy task and could lead to
speeded RTs through mutual excitation. A more complete model
of the RT behavior in the SOA task could integrate the single-
channel models for sensory input processing with other mecha-
nisms that capture facilitation and correlation in RTs.

Appendix: parameter fitting
The data points in Figure 4, A and C, were fitted with the mutual
excitation model described by Equations 5 and 9, using the p � 5
free independent parameters of the model: �, �, �r, �s, and T0,
which we denote collectively as �. To simplify the optimization
method, we binned the raw dataset into N � 6 bins that summa-
rized the experimental data. The parameter values shown in Ta-
ble 1 were estimated by minimizing the weighted sum of squared
errors

S�� � �
1

N �
i�1

N ��SRTexp
i � SRTmodel

i ����2

	̂SRTexp
i

2

� b2

�Rexp
i � Rmodel

i ����2

	̂Rexp
i

2 � (12)

where SRTexp
i and SRTmodel

i are, respectively, the experimental and
simulated mean SRTs within bin i, whereas Rexp

i and Rmodel
i refer,

respectively, to the experimental and simulated correlation coef-
ficients of RTs in bin i. The symbols 	̂SRTexp

i
2

and 	̂Rexp
i

2
denote the

half-lengths of the 95% confidence intervals of the experimental
estimates of SRTexp

i and Rexp
i , respectively. The function S(�)

quantifies the differences between the predictions of the model
and experimental data by summing the squared error between
measures, weighing more heavily data points that are measured
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with higher precision. The estimates for the mean RTs are more
precise than the estimates for the correlation coefficient. From
Equation 10, this implies that errors for the mean SRT contribute
much more to the cost function than the errors for the correlation
coefficient. To compensate for the overrepresentation of mean
SRT errors to the cost function, we have introduced the coeffi-
cient b � 1, whose value is estimated by requiring the two terms
in Equation 10 to have the same order of magnitude. Because the
range of observed SRTs and correlations is �50 ms and 0.5, re-
spectively, and the average error for the estimated mean SRT and
correlations is �2 ms and 0.1, the ratio between relative errors of
the mean SRT and of RT correlations is

relative errorcorr

relative errorSRT
�

(errorcorr/rangecorr)

(errorSRT/rangeSRT)
�

(0.1/0.5)

(2 ms/50 ms
� 5.

(13)

This ratio could be used as a value for the compensation factor b.
Introducing a compensation factor comes at the price of biasing
the fits toward less precise experimental measures. We need
therefore a compromise between giving correlation errors a de-
cent share in the cost function (b � 5) and weighing data points
proportionally to their precision (b � 0). In our optimization
algorithm, we set b � 1.5.

There are no simple closed-form expressions for SRTexp
i ��� or

Rexp
i ��� and hence for the cost function S(�). For this reason, we

minimized S(�) over the parameters using a direct search algo-
rithm in parameter space. We used the downhill simplex algo-
rithm by Nelder and Mead (1965), which does not require the
evaluation of derivatives of the cost function and which is thus
appropriate for optimizing stochastic models (Bogacz and Co-
hen, 2004). In short, the downhill simplex algorithm evaluates
the cost function at p 
 1 different vertices of a simplex in the
p-dimensional parameter space and replaces the vertex with
highest cost by a new vertex with lower cost. This new vertex is
found by shrinking, expanding, or reflecting the high-cost vertex
of the original simplex. Each evaluation requires computing the
values of SRTmodel

i ��� and Rmodel
i ���, which were estimated from a

sample of 10 4 realizations of the dual integration process with
parameter � and with SOA durations drawn from a uniform
distribution within the ith bin interval. The algorithm stops when
the parameters do not change from one step to the next for more
than a predefined tolerance value. On average, the algorithm re-
quired �150 iterations before stopping.

Direct search methods, such as the downhill simplex algo-
rithm, can find an area with a local minimum relatively fast but
cannot determine accurately the precise location of the mini-
mum. This lack of convergence is worsened by the fact that the
cost function includes sample estimates, which are inherently
stochastic. More importantly, these algorithms may converge to a
local, rather than a global, minimum. To minimize these prob-
lems, we ran the downhill simplex algorithm 100 times with dif-
ferent noise realizations. The p 
 1 lowest minima resulting from
the 100 simulated trials were then selected as the vertices of a new
simplex, which was used as the initial simplex in a new algorithm
execution. For this last execution, we increased the sample size to
10 5 realizations per parameter setting to get more accurate esti-
mates. The optimization method is computationally expensive:
each evaluation of the cost function at one particular vertex of the
simplex lasts a few seconds, which implies a total process time of
several days per subject. These times were reduced to a few tens of
hours using the New York University cluster facilities.
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